Search results for " X-ray Astronomy"
showing 7 items of 7 documents
Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design
2016
ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …
The mirror module design for the cryogenic x-ray imaging spectrometer on-board ORIGIN
2011
ORIGIN is a medium size high-energy mission concept submitted to ESA in response to the Cosmic Vision call issued on July 2010. The mission will investigate the evolution of the Universe by performing soft X-ray high resolution spectroscopic measurements of metals formed in different astrophysical environments, from the first population III stars at z > 7 to the present large scale structures. The main instrument on-board ORIGIN will be a large format array of TES X-ray micro-calorimeters covering a FOV of 30' at the focal plane of a grazing incidence optical module with a focal length of 2.5 m and an angular resolution of 30'' HEW at 1 keV. We present the optical module design which is bas…
The IXO Wide-Field Imager
2010
The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 × 10 cm² with a format of 1024 × 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 × 100 μm² corresponds to a fivefold oversampling of the telescope's expected 5 arcsec point spread function. The WFI's basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for…
The wide-field imager for IXO: status and future activities
2010
The Wide Field Imager (WFI) of the International X-ray Observatory (IXO) is an X-ray imaging spectrometer based on a large monolithic DePFET (Depleted P-channel Field Effect Transistor) Active Pixel Sensor. Filling an area of 10 x 10 cm2 with a format of 1024 x 1024 pixels it will cover a field of view of 18 arcmin. The pixel size of 100 x 100 μm2 corresponds to a fivefold oversampling of the telescope's expected 5 arcsec point spread function. The WFI's basic DePFET structure combines the functionalities of sensor and integrated amplifier with nearly Fano-limited energy resolution and high efficiency from 100 eV to 15 keV. The development of dedicated control and amplifier ASICs allows for…
XIPE: the x-ray imaging polarimetry explorer
2016
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…
The LOFT mission concept: a status update
2016
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolut…
The Large Area Detector onboard the eXTP mission
2018
The eXTP (enhanced X-ray Timing and Polarimetry) mission is a major project of the Chinese Academy of Sciences (CAS) and China National Space Administration (CNSA) currently performing an extended phase A study and proposed for a launch by 2025 in a low-earth orbit. The eXTP scientific payload envisages a suite of instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray spectral, timing and polarimetry sensitivity. A large European consortium is contributing to the eXTP study and it is expected to provide key hardware elements, including a Large Area Detector (LAD). The LAD instrumen…